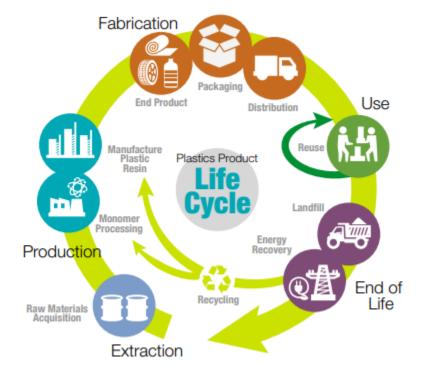
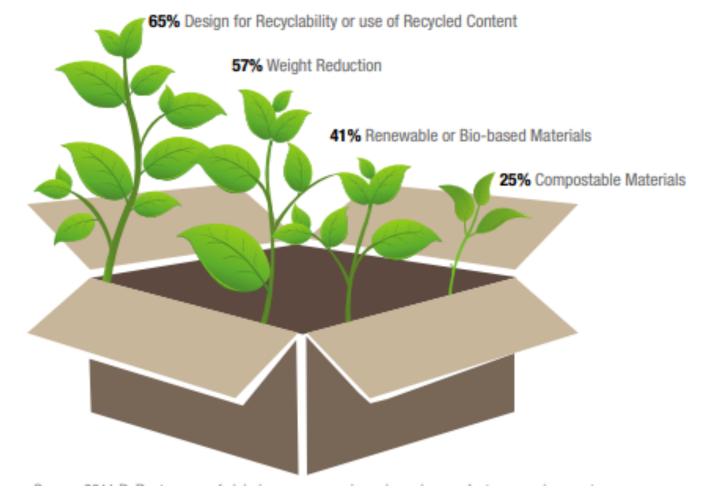

Active biobased packaging for protection of food products


<u>Aleksandra Nešić</u> *University of Concepcion, Technological Development Unit, Concepcion, Chile*

WORLDWIDE PLASTIC PRODUCTION

PLASTIC WASTE MANAGEMENT


Plastic has slow rate of biodegradation.

It may remain intact in environment more than 100 years.

Sustainable packaging

WHERE MOST SUSTAINABLE PACKAGING EFFORTS ARE DIRECTED

Active packaging

Allow interaction with food products and the environment and play a dynamic role in food protection.

Addition of sachets (pads)

Incorporating directly into the packaging films

Coating of packaging with a matrix that acts as a carrier for antimicrobial agent

- Delayed oxidation
- Control the respiration of fruits for example
 - Control the growth rate of bacteria
 - Moisture migration

Aim

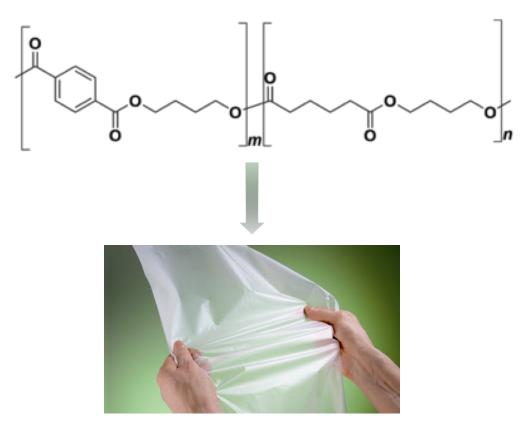
From agro-waste and natural resources...

...Active biodegradable food packages for fruits and meat poultry



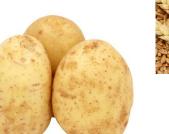
Applicative potential of raw materials

- Green-sustainable approach
- Maintain the properties of origin package material
- Enhance the quality of targeted food products and shelf life


POLYMERS OF INTEREST-PLA

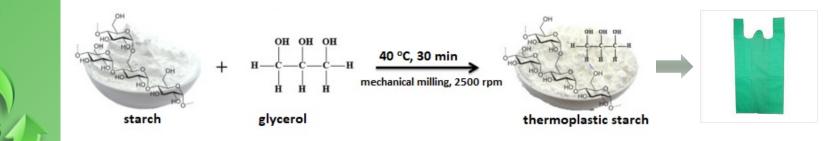
POLYMERS OF INTEREST-PBAT

Polybutylene adipate therephtalate:


copolyester of adipic acid, 1,4-butanediol and terephthalic acid

Fully biodegradable under industrial composting conditions

POLYMERS OF INTEREST-TPS



Starch

Thermoplastic starch

CASE I: PLA CLAMSHELLS-EXPORT OF BERRIES

PLA (85%)+ ADDITIVES (15 %) processing

1. Extrusion of laminates

2. Thermoforming

3. Clamshells

✓ Transparent
 ✓ Thermoresistant
 ✓ Compostable

IN VIVO TESTS

0. day

42. day

Control clamshells PLA clamshells Control clamshells PLA clamshells (PET) (PET)

Storage at 0-4 °C, 85% RH
 ✓ After 42 days, blueberries were still in good conditions
 ✓ No appearance of fungal infections

CASE II: ACTIVE PLA/PBAT BAGS-CLIMACTERIC FRUITS

Sample	Formulation	Ingeo™ 4032D [%]	PBAT [%]	Compatibilizer [%]	Chain-extender [wt%]
T1	PLA/PBAT	88.0	10.0	2.0	0.5
T2	PLA/PBAT	78.0	20.0	2.0	0.5
Т3	PLA/PBAT	68.0	30.0	2.0	0.5
T4	PLA/PBAT	58.0	40.0	2.0	0.5

Figure 1. Co-extrusion of biodegradable bags

Mechanical and optical properties

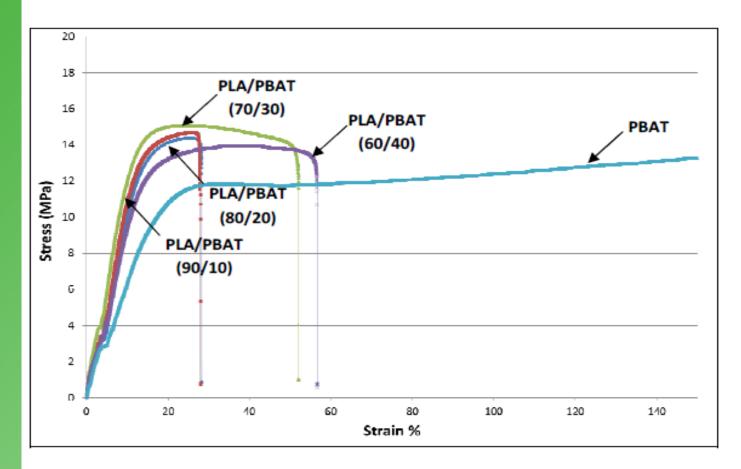


Figure 2. Stress-strain diagram

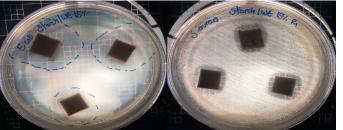
✓ PLA/PBAT 70/30
 the best mechanical and optical properties

Production of masterbatch PBAT/bioactive additives

Co-extrusion

- High transparency
- ✓ Maintained mechanical stability
- ✓ High thermal stability (up to 390 °C)
- ✓ High antifungal activity toward
 Alternaria alternata
- ✓ High absorption of ethylene

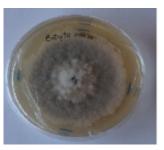
IN VIVO TESTS-KIWI


Physical parameters of kiwi after 30 days of storage at 85 % RH

SAMPLE	FIRMNESS (4.2 initial)		TSS, % (12.4 initial)		Dehydratation, %	
	0 °C	20 °C	0°C	20 °C	0°C	20 °C
PLA/PBAT ACTIVE BAG	4.2	2.4	12.9	13	1.1	3.0
COMMERCIAL BAG	3.7	2.4	13.9	12.8	0.4	2.6

CASE III-ANTIOXIDANT TPS PADS FOR MEAT

Bioctive component: Grape cane extract rich in resveratrol and viniferin


- ✓ Thermal stability up to 280 °C
- ✓ Mechanical resistance 1.5-2 MPa
- ✓ Antioxidant activity 80-90%
- ✓ Moderate antifungal activity toward
- B. cinerea
- ✓ High antibacterial activity toward
- E. coli and S. aureus

 ✓ Potential as active pad or inner layer of bilayer package for meat

CASE IV-ANTIFUNGAL TPS PAD FOR FRUITS

Bioctive component: Cinnamon oilbased emulsion

- ✓ Thermal stability up to 280 °C
- ✓ Mechanical resistance 2 MPa
- Moderate antifungal activity toward
 B. cinerea

 ✓ Potential as active pad or inner layer of clamshells for fruits

Thank you for your attention!