Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

Carbonization as recycling strategy for carbon and nutrients

Christoph Pfeifer^a, <u>Klaus Mikula</u>^a, Gerhard Soja^{a,c}, Walter Wenzel^b

University of Natural Resources and Life Sciences, Vienna, Austria ^a Institute of Chemical and Energy Engineering, Muthgasse 107, A-1190 Vienna ^b Institute of Soil Research, Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau

^c AIT Austrian Institute of Technology

5th Latin American Congress on Biorefineries

January 7-9, 2019 Concepción, Chile www.boku.ac.at

🔀 💽 🔊 😹 🔕 🐼 🐼 🙆 🔺 💽 😭 😒

Outline

- Motivation
- Thermo-chemical conversion
- Pyrolysis and HTC processes
- Products and use as soil amendment
- Nutrient availability tests:
 - Plant tests
 - Fertilizer extraction tests
- Situation in Austria and Germany
- Conclusion and outlook

Motivation

- Mitigation of Climate Change
- Thermochemical Conversion
- Carbonization > Production and Use of Biochar
 - Soil amendmend
 - Carbon sequestration
- IPCC Special Report (2018):
 - "Biochar sequestration provides an additional route for terrestrial carbon storage."
 - "Biochar [...] can increase soil carbon sequestration leading to improved soil fertility properties"

IPCC, 2018: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial level

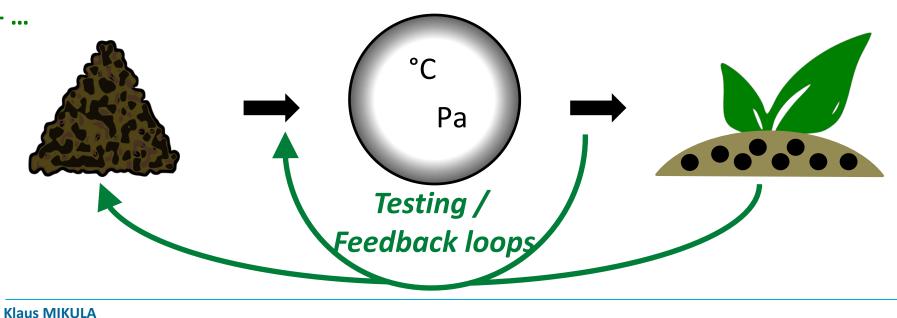
Sustainable biomass value chains

Source: Pröll et al., GHGT-13, 14-18 November 2016, Lausanne, Switzerland

- Priority is given to food, feed and other industrial utilization
- By-products for energetic use appear in all process steps
- Closed life cycle including sustainable soil management

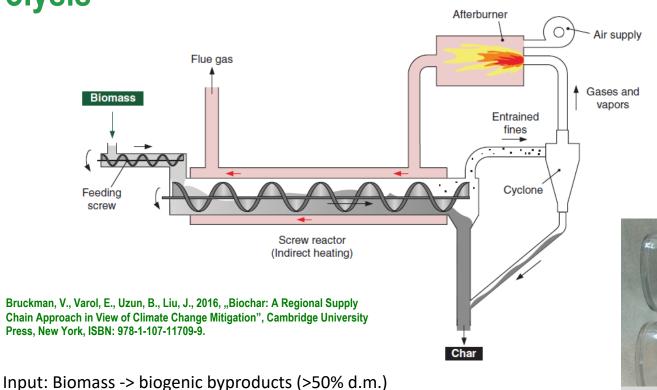
Process development route

FEEDSTOCK (Residues & Waste)


PROCESS

- Municipal Sewage Sludge
- Meat & Bone Meal
- Animal Manures & Slurry
- Biogas slurry

- Pyrolysis
- Gasification
- HTC


PRODUCT

- Fertilizer
- Soil conditioner
- C-Sequestration

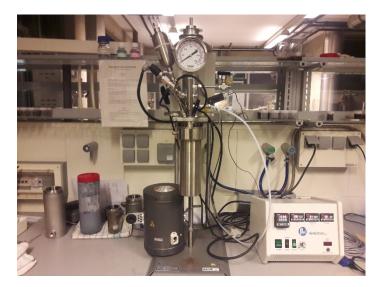
Pyrolysis

- Process: no O₂, high T and p, volatiles released
- Pyrolysis gas: mainly CO, CO2 and water, condensable hydrocarbons
- Biochar: very porous solid with very high C-content
- Bio-oil: or tar consists of large variety of HC larger than Benzene => Precursor for biofuels and chemicals

Cherry pits Walnut shells

Klaus MIKULA

Klaus MIKULA


Experimental pyrolysis and HTC reactor at BOKU and AIT

- 300-900 °C
- Variable residence time
- Flush gas: N₂
- Possibility of vapour activation at 900 °C
- Throughput: 2 kg/h biomass d.m.= 0.4-0.6 kg biochar/h
- Volatiles are completely burnt

- ~ 280 °C
- ~ 60 bar
- 600 ml
- stirrer

Properties of Biochar

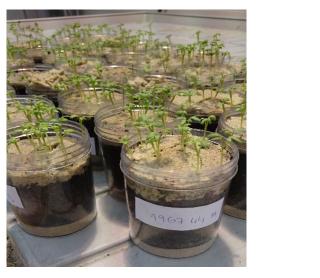
- Input Material + Process Parameters => Properties of Biochar
 - Specific surface area
 - Cation exchange capacity
 - pH
 - Elemental composition
 - Pollutant concentrations
- European Biochar Certificate (EBC):
 - Production and Quality:
 - > 50% C (d.m.)
 - H:Corg < 0,7
 - O:Corg < 0,4
 - Indication of VOC-, N-, P-,K-, Mg-, Ca- concentration
 - Limiting values of heavy metals and PAH

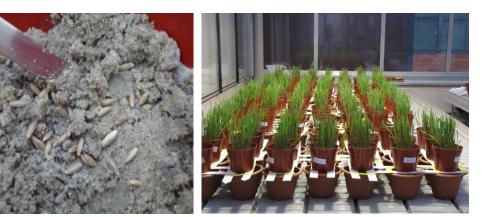
Biochar as soil amendment

- Carbon sequestration
- Higher water retention
- Immobilisation of pollutants
- Mitigation of N₂O Emission from soil
- Often support of micro-organisms
- Often better <u>availability of nutrients</u>

Source: https://i1.wp.com/terra-preta.de/wpcontent/uploads/2014/07/terra-preta-picture-09.jpg?w=800&ssl=1

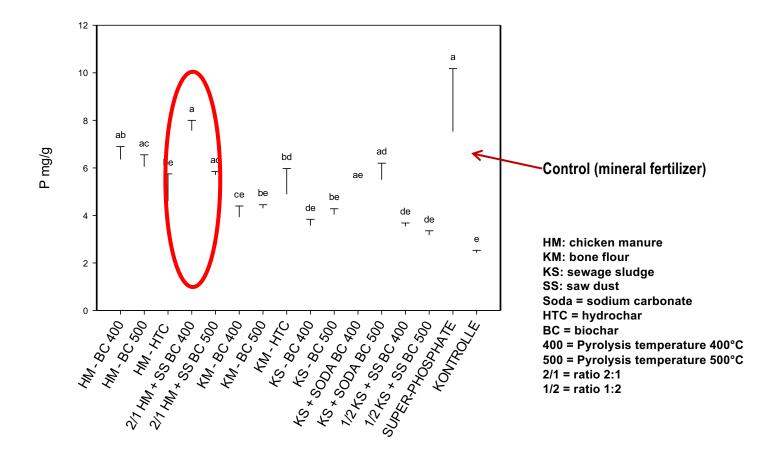
Classical plant tests




Germination test

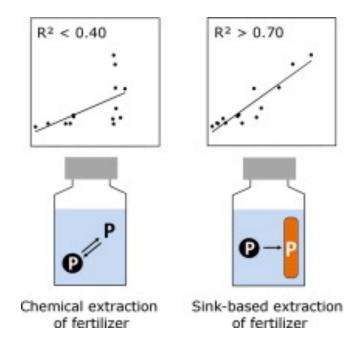
- Biological model: garden cress
 (Lepidium sativum L .)
- Germination rate during the first 6 days of growth
- Evaluation of phytotoxicity

Neubauer test

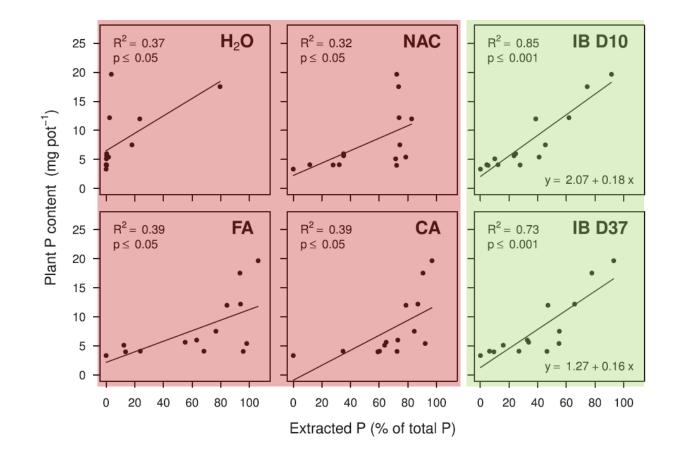

- Rye (*Secale cereale* L.) grown in sand
- Nutrient solution with essential macro nutrients but without P
- P is tested as amendment to the solid substrate
 - 17 days of cultivation

Phosphorus supplying potential

- P concentration in rye plants
- Standardized Neubauer test => plants received the same amounts of P

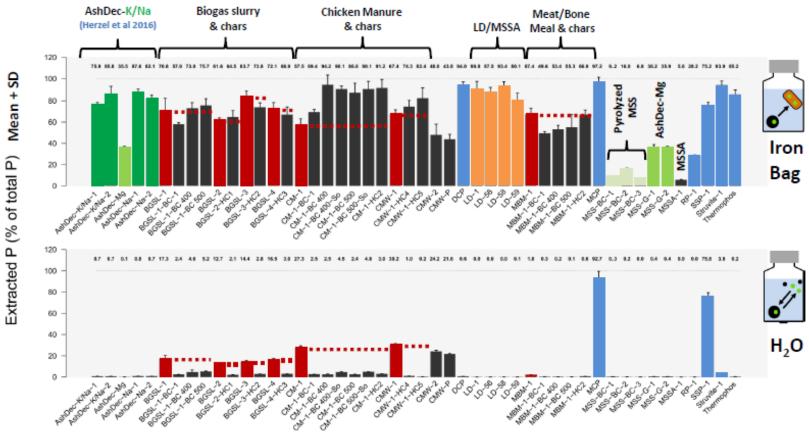


Methods for assessing nutrient availability


- Equilibrium-based methods => cannot simulate plant uptake
- Infinite sink "Iron bag" => similar to plant roots => predictor for nutrient availability

Source: Duboc, O., Santner, J., Golestani Fard, A., Zehetner, F., Tacconi, J., Wenzel, W.W. Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers, Science of The Total Environment, Volumes 599–600, p1160-1170

Calibration of extraction procedures in plant experiments



Source: Duboc, O., Santner, J., Golestani Fard, A., Zehetner, F., Tacconi, J., Wenzel, W.W. Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers, Science of The Total Environment, Volumes 599–600, p1160-1170

Product assessment for P availability using a combination of infinite sink (iron bag) and water-extractable fraction

- Iron bag (infinite sink) indicates availability of P on demand by plants
- Water solubility indicates risk of leaching from the root zone

??


Source: Duboc, O., Santner, J., Golestani Fard, A., Zehetner, F., Tacconi, J., Wenzel, W.W. Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers, Science of The Total Environment, Volumes 599–600, p1160-1170

Klaus MIKULA

Biochar production in Austria and Germany

- Producers in A:
 - 2 producers with 250-350 t/a
- Producers in D:
 - 1 with ~3000 t/a, 2 with 600 1000 t/a, min. 3 with ~200 t/a

Summary and conclusions

- Biochar utilization for soil application is a very promising utilization route
- Biochar from residues
- Technologies are available optimization necessary
- Product characterisation as well as nutrient availability determination are important

Questions?

klaus.mikula@students.boku.ac.at christoph.pfeifer@boku.ac.at gerhard.soja@boku.ac.at walter.wenzel@boku.ac.at

www.boku.ac.at

2 🖸 🔛 🕲 🛞 🙆 🖉 🖉 🖾 🛓 🗗 😭

Source: Lehmann 2007