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SOME LINKS TO FORMER PRESENTATIONS

� Eduardo Falabella: co-processing of vegetable oils and bio oils is impacted by phenolics

� Marisol Berti: need for fertilizer reduction, land use change!

� Andy Perez: infections on Pinus radiata by Sirex noctillo and Eucalyptus globulus by Gonripteres
scutellata Î new fenolic compounds

� Maria Martinez: valorization of all fractions including lignin

� Residential waste session: lignocellulose available

� Tim Schulzke: Ablative Fast Pyrolysis Î 10% phenolics for resin production

� Bruno Gorrini: resins from tannins because very reactive

� Henrikki Liimatainen: DES as new way of fractionation of lignocellulose

� Danny Marero: Maleic anhydride in Glycerol – SA polycondensation

� Alex Berg: Thermowood, oxygen removal in pyrolysis,…

2



Chapter 1            Why Aromatics?
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CRACKING
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COSTS

FUNCTIONALITY
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FROM XYLENE TO PET

Petro-based                                                       versus     Bio-based

8 Thomas Farmer (Univ. York)



USE THE OXYGEN FUNCTIONALISATION IN A SMART WAY WITH NEW CATALYTIC MEANS
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Thomas Farmer (Univ. York)



OXIDATION VERSUS REDUCTION

Study by Thomas Farmer, Univ. York 
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DRIVERS AND OPPORTUNITIES FOR DEVELOPMENT OF ‘LIGNOCELLULOSIC FEEDSTCOK TO AROMATICS’ 

� Societal driver for transition to bio-economy (i.e. renewable feedstock)

� Reducing footprint of industrial processes

❖ Use of biomass

❖ Use of functionality (less steps)

� Innovation in chemicals & materials

❖ Safer, performance-based products

❖ Through disruptive enabling process technologies

� Economic drivers

❖ 40% of chemicals are aromatic (>23 mln tons BTX-fenol)

❖ Inability to valorize lignin is a lost opportunity in biorefining

❖ Recovery boiler (P&P) is limited in solids content, removal of lignin solves this problem 

❖ Shale gas does not deliver higher than C3

❖ 25% of world production in Europe (large amount of jobs)
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Sustainable & renewable
feedstocks

geopolitics

climate

price volatility

environment



HOW CAN BIOMASS REPLACE AROMATIC CHARACTERISTICS? 

Based on the lignocellulose biorefinery
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Replace by lignin-based aromatics

Replace by sugar-based
aromatics via fermentation

Replace by sugar-based furan
chemistry or via Diels-Alder
chemistry



Chapter 2     Bio-economy as part of the 
circular economy

Food/feed use and its waste –based bioeconomy



BIO-ECONOMY AS PART OF THE CIRCULAR ECONOMY

� MSW at 520 kg/p/y of which 50% is biodegradable
� Still huge amounts end up in landfills
� Global food loss and waste generate 4.4 Gtons CO2eq, i.e. 8 % if anthropogenic GHG emissions
� Only 5% of sewage sludge is converted into CH4 

Food & feed processing and domestic use leads to large amounts of waste
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OECD, Realising the 
circular bioeconomy, 
Nov 2018, No. 60



WASTE-SUGARS TO FURANICS
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Biphasic reactor for conversion 

of waste into furans (kg/hr)



FURANS TO AROMATICS
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Chapter 2     Bio-economy as part of 
negative carbon emissions

Forests in climate change mitigation
Forest-based economy



NEGATIVE EMISSIONS AND THE PARIS-GAP 
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Prof. Radermacher
Uni. Neu-Ulm



GLOBAL DEFORESTATION VS CARBON STOCK AND TREE DENSITY!!!!

- Most data about surface
- No data about carbon stock, carbon capture, tree density, tree renewal,…
- 13 Mln ha forest cut down annually Î 20% GHG emissions
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NEGATIVE EMISSIONS

From three trillions of trees to four trillions of trees! (Tom Crowther, Yale Univ., ETH-Zurich)
One trillion of trees can be added without changing biotopes
Action by UNEP and ¨Plant for the Planet”
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ROLE OF FORESTS IN CLIMATE CHANGE MITIGATION
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� Forests as carbon sink

� Wood products as carbon storage

� Wood/lignocellulose-based materials substituting greenhouse gas intensive materials (1,2 kgC/kgC)

� Forests for water management

� Forests as preservation in biodiversity



FORESTS UNDER THREAT BY CLIMATE CHANGE
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� Forests under threat by climate change Î increase in forest fires

� Forest density as a risk for forest fires Î need for fellings

� Forests under threat by climate change Î pine beetle infection

� Forests under threat by infection Î old trees are more vulnerable

Î Need for new forest management (harvesting & planting)



INDUSTRIAL WOOD USE

� In sustainably managed forests, the forest-based economy can develop

� The lignin biorefinery is (finally) emerging in order to valorize all streams, reduce energy 
consumption, increase cellulose efficiency, …

� Pulp & Paper companies act as a catalyst of that movement with a focus on product positioning 
and creation of unique competitive advantages 
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Chapter 4           How to proceed from  
lignin to aromatics? 



ORIGIN OF LIGNIN

� Lignin from pulp & paper industry
▪ Lignosulfonate lignin (wood)
▪ Kraft lignin (wood)
▪ Soda lignin (non-wood)

� Lignin modifications
▪ Lignoboost (CO2-precipitation)
▪ Lignoforce (oxidation + CO2-precipitation)
▪ Ligniox (alkaline oxidation step)
▪ Ecolig
▪ ….

� H-lignin from cellulose ethanol production
▪ Steam/ammonia explosion + enzymes
▪ …

� New lignins
▪ scCO2, scAlcohols
▪ Alkali or acid (LXP, Zambezi, Chempolis)
▪ Autohydrolysis (hot water)
▪ Organic solvents: Lignol, FhG, CIMV
▪ Ionic Liquids/DES/ NADES
▪ …

Pulp & paper industry (+ upgraded lignins) or from Cellulose ethanol
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LIGNIN VALUE VERSUS LIGNIN-BASED PRODUCT VALUE

26



PHYSICOCHEMICAL FACTORS PROMISE A BRIGHT FUTURE FOR LIGNIN-BASED PRODUCTS

� presence of aromatic rings reactive functional groups
� good rheological and visco-elastic properties and good film-forming ability
� compatibility with a wide range of industrial chemicals
� hydrophilic or hydrophobic character depending on origin
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MONOMER MODIFICATION AND REACTIVE SITES!

phenol guaiacol

syringol methyl guaiacolvanillin vinyl guaiacol

vinyl syringolmethyl syringol syringaldehyde

Aromatic ortho site

Aromatic para site

Major 
monomeric

products
obtained

during lignin
fractionation
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0
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# reactive groupsx
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OLIGOMERS AND REACTIVE SITES!

1
0

3

2

Typical
structures
(dimers & 
oligomers) 
obtained
from the

BCD 
process

Oligomeric
structures are 

intrinsically more 
suitable than
monomers for

resin development 
(higher # of 

reactive groups). 

Reactivity of 
the dimers
is better

compared to
monomers, 
but it is not

always
sufficient



Chapter 5 Lignin depolymerization & 
fractionation



DEPOLYMERIZATION & FOCUS ON FUNCTIONALITY
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LIGNIN DEPOLYMERIZATION
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LIBRA process (pyrolysis)

• Feedstock: different types of lignin
• Pyrolysis at 400 °C
• Proof-of-concept at 1 kg lignin/h
• Yield: ~ca.80 %

✓ Pyrolytic liquids
✓ Gases
✓ Char formation

MOGHI

• Feedstock: 2G lignin from ProesaTM technology
• Catalytic deoxygenation and depolymerization
• Conversion into bio-naphta and lignin derivatives

✓ Napthene: 10-15 %
✓ Paraffins: < 5 %
✓ Phenolics:  75-85 %

• TRL 6

I
P

G
e
e
n 
IP

OH

Applications:
Specifications –
Requirements

- Functionality
- Viscosity
- Impurities
- Mw
- …

What do 
companies 
want?

- Reductive
- Oxidative
- Solvolytic
- Thermal
- Enzymatic



WOOD: LIGNIN FIRST PROCESS OR REDUCTIVE CATALYTIC FRACTIONATION
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45-100 €/ton wet wood
Up to 250 €/ton dry wood



Voettekst invulling34

MOLECULES THAT ARE OBTAINED



Chapter 4 Downstream separation of lignin 
streams using membranes: A few case studies



WHY MEMBRANES ?

� Non-thermal, therefore energy-efficient and mild
� No additives required
� Proven, robust technology
� Easy, flexible and scalable
� Separation based on size, charge, volatility and/or affinity
� Wide choice of membranes, modules and operational modes 
� Aqueous as well as organic solvent based mixtures
� Commercial as well as newly developed membranes

Downstream processing

❖ Recovery
❖ Concentration
❖ Purification 
❖ Fractionation

Integrated separation

❖ In situ product recovery
❖ Continuous processes 
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1A PURIFICATION/FRACTIONATION OF TECHNICAL LIGNINS

Water-soluble lignosulphonates

0%

20%

40%

60%

80%

100%

Sulphite spent liquor Purified-concentrated high Mw
fraction

Lignin Sulfur total Sulfate Acetic acid Mannose

Mg Organic acids Sugars Minerals Furfural/HMF

Sulphite spent liquor Purified high Mw
lignosulphonate fraction

UF

▪ Lignin: 90 g/L
▪ Total S: 12.5 g/L
▪ Sulfate: 6.9 g/L
▪ Acetic acid: 4.2 g/L
▪ Mannose: 1.8 g/L
▪ Mg: 6.2 g/L
▪ Organic acids: 0.2 g/L
▪ Sugars: 3.2 g/L
▪ Minerals: 0.6 g/L
▪ Furfural/HMF: 0.3 g/L

▪ Lignin: 123 g/
▪ Total S: 10.6 g/L
▪ Sulfate: 2.1 g/L
▪ Acetic acid: 0.3 g/L
▪ Mannose: 0.2 g/L
▪ Mg: 4.2 g/L
▪ Organic acids: < RL
▪ Sugars: 0.2 g/L
▪ Minerals: 0.3 g/L
▪ Furfural/HMF: < RL

ES209, 15 bar

100 % removal of organic
acids and residual sugars
87 % removal of minerals
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Pretreatment by alkaline oxidation
Input Process Output

� [Na+] : 8.1 g/L
� [CO3

2-] : 11.5 g/L
� [Lignin] : 12 r 2 g/L
� MW : 200 – 4500 g/mol
� [organic acids] : 7.75 g/L

� [Na+] : 0.8 g/L
� [CO3

2-] : 0.2 g/L
� [Lignin] : 67 g/L 
� [organic acids] < 0.7 g/L

� UF/NF
� Diafiltration
� Concentration

12 g/L 17 g/L[Lignin] Quasi-
complete 

removal of 
CO3

2-, organic
acids and

residual sugars
44 % removal

of Na+

67 g/L
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ESP04 (PCI - Xylem)
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2 SEPARATION OF LIGNIN DEGRADATION PRODUCTS

Base catalysed degradation (BCD)
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Current DSP process

Lower Mw phenolics Higher Mw phenolics



2 SEPARATION OF LIGNIN DEGRADATION PRODUCTS

Base catalysed degradation of lignin
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Alternative membrane process

pH-stable NF membrane
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� Decreased contribution of low MW compounds in Feed/Retentate
� Fractionation of lignin crude oil by MW
� Outlook: further fractionation of low MW fraction
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BIO-HArT-5 membrane

15 bar
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 Feed after circulation
 Retentate DV5,72
 Total mix permeate

BIO-HArT-5 (400 Da)

15 bar 35 bar

Evolution of Mw profile in feed-retentate during diafiltration Mw profile of final fractions
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Grafted ceramic membranes: unique separation capabilities thanks to surface tailoring

New flexible functionalization platform: FunMem®

❖ Unique, direct M-R bond 
❖ Stable, non-hydrolysable
❖ Commercial membranes
❖ Broad variety of functional groups
❖ Tailored membrane surfaces

FunMem4Affinity – Exploration of Functional 
Ceramic Membranes in Organic Solvent 

Nanofiltration (2012-14)

Membrane

Solvent Solute

New possibilities for affinity-based separations:
❖ Tuning of interactions
❖ Beyond size-exclusion
❖ Selectivity by design
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Chapter 5         Analytics and conversion of lignins



BIO-AROM-ID

9/01/2019
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- Chemical analysis
- Mass spectra
- Statistical data treatment
- Consolidation



BIO-AROM-ID

C OVER O ANALYSIS 
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Lignin 3
P3 12,8R (low molecular 
weight)

Lignin 5
P2 4,8R (high molecular 
weight)

First bio-oil

# C
10 20
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DE AND REFUNCTIONALISATION

▪ Removal of propyl-, methyl-groups
▪ Removal of methoxy groups
▪ From alkylfenol mixture to application mixture
▪ Other modifications
▪ Developed on monomers



Chapter 6     Bio-economy as part of 
carbon storage



CAN THE BIO-ECONOMY BE PART OF CARBON STORAGE

Biological carbon storage is different from a circular economy
Storage in engineered bio-based construction materials
Not only by using wood or bamboo in a direct way
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Rüdiger Lainer + Partner

CLT



TRANSFORM BIO-WASTE INTO FURNITURE

But you need a hardener and a resin!!!!
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CROSS LAMINATED WOOD & ENGINEERED BAMBOO

Need for glues, resins, coatings, …? 
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� Replacement of phenol in PF-resins for plywood, OSB
� Replacement of PF resin in plywood, OSB
� Replacement of polyols in PU
� Replacement of bisphenol A or F in epoxyresins
� Development of coatings based on phtalic anhydrides
� Use of plasticizers and dispersants 

� What is missing?



FURFURAL FROM BAGASSE
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NEED FOR CHEMICALS TO IMPROVE THE USE OF BIOMASS AND BIOWASTE

� The Norvegian company Kebony converts pine wood into wood of tropical hardness by a furfural 
alcohol treatment (polymerization)

� Furan resins used to make natural fibre coatings
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Chapter 6         Valorization of aromatics
Conclusions



BIOAROMATICS VALUE CHAIN
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OR LIGNIN FROM LIGNOCELLULOSE

� PU: lignin (after demethylation & oxypropylation) as polyol + di-isocyanate and mixing with 
other polyol. In IL gives less unreacted isocyanate

� Lignin in PP with different surface activators

� Aerogels from lignin
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LIGNIN DEVELOPMENTS

� Dispersant: Lignin oxidation + sulfomethylationÎ OSL

� Flocculant: Lignin polymerisation in aqueous acidic environment

� Coating: LeafCOAT™ made from lignin from the Glycell™ process

� Wood preservation: Wood Honey™ supernatant of carbonated black liquor (Lignoforce, 
Lignoboost) + additional membrane filtration to remove salts

� Carbon fibers

� Concrete plasticizer

� Bitumen/roofing
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Superplasticizer, 
0.2%

LigniOx lignin, 
0.4%

Lignosulfonate, 
0.4%

No plasticizer



LIGNOVALUE PILOT PLANT
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CONCLUSIONS

� Aromatics from biomass are on the move (lignin-, tannin- or sugar-based)
� Organic waste management and forestry: abate climate change Î feedstock provider
� Depolymerization allow to make lignin more manageable and more reactive
� Membrane separation allowed an economic viable purification of reactive fractions for further

processing
� Via dealkylation and refunctionalisation
� To make additives, new polymers, resins, …
� REACH (regulation in general) is point of attention
� Analytics standardisation are needed
� Matrix: feedstock origin, pretreatment, depolymerisation process, separation, application
� Potential for combinations in biocomposites, 3-D printing, …
� We can provide molecules or materials to companies for testing by partners via Biorizon and 

BIG-Cluster and large amount production via Lignovalue plant

Development of innovative applications via monomers as new building blocks & oligomers towards 
new chemistry (bio and chemical catalysis) for more sustainable materials
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ARBOREF

SMARTLI
LigniOx

MAIA

LF4Value

PhD project : Functionalization 
of lignin dimers  towards flame 
retardants

BIO-HArT

Post-docs on new oligomer chemistry
Decouloring
Analytics


