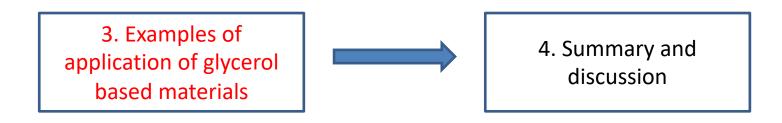
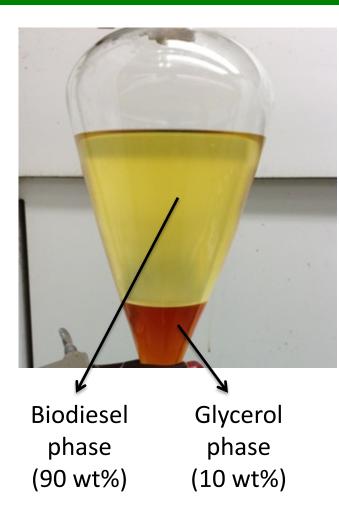

Synthesis and process engineering of glycerol based polyesters as toughness enhancers for commercial bioplastics

Oscar Valerio, Manju Misra, Amar Mohanty

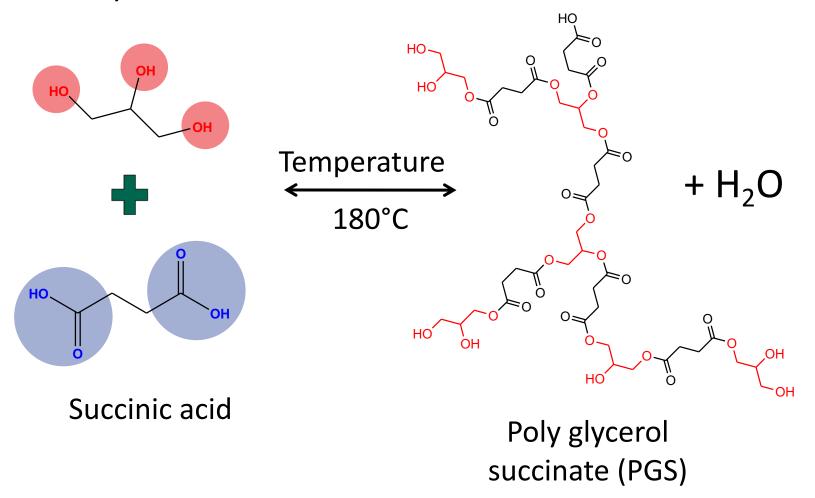

January 8, 2019

5to Congreso Latinoamericano sobre Biorrefinerias Concepcion, Chile


Presentation outline

Results and discussion

Glycerol facts and statistics



Glycerol numbers

- Worlwide production > 1.1 billion lbs/year¹
- Estimated production
 by 2020 = 5.8 billion
 lbs/year ²
- Projected market by 2018 = \$2.1 billion ³
- 1. Top value added chemicals from biomass, U.S. Department of Energy, 2004
- 2. M. Ayoub, A.Z. Abdullah. Renew. And Sustain. Energy Reviews, 2012, 16, 2671-2686
- 3. <u>http://www.biofuels-news.com/industry_news.php?item_id=7794</u>, from 20 May 2014

Glycerol polycondensation

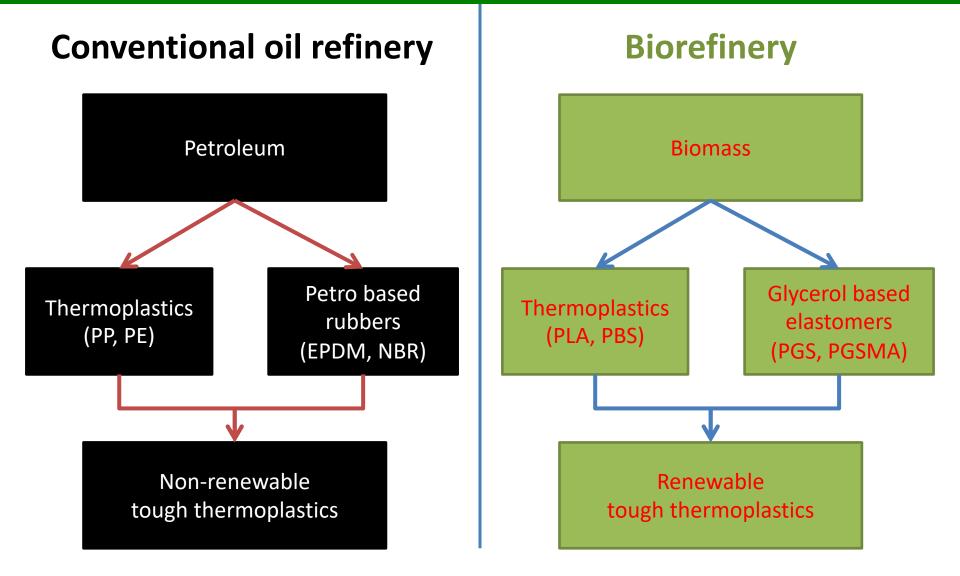
Glycerol


Valerio, O., Horvath, T., Pond, C., Misra, M., & Mohanty, A.K. Industrial Crops and Products 78 (2015): 141-147. 4

Glycerol polycondensation

- Advantages
 - One pot procedure
 - Usage of biobased monomers
 - Can be synthesized in bulk (with no solvent addition)
 - No toxic monomers or co products formed

- Challenges
 - Gelation control (crosslinks at high conversion)
 - Homogeneous
 synthesis of gel
 products
 - Difficult to purify
 - Low molecular weight


PGS products

Liquid poly glycerol succinate (stopped before gel onset)

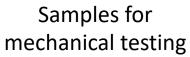
Elastomer poly glycerol succinate (stopped after gel onset)

Toughening of bioplastics with PGS

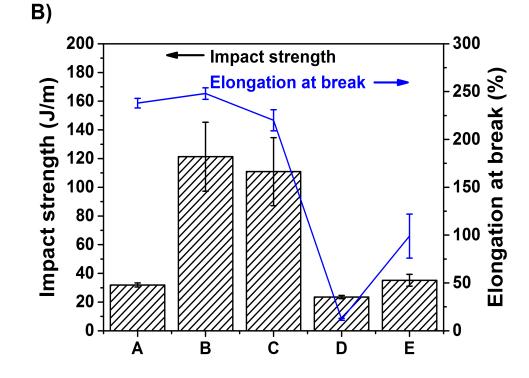
Glycerol polyester (PGS) blending with Poly butylene succinate (PBS)

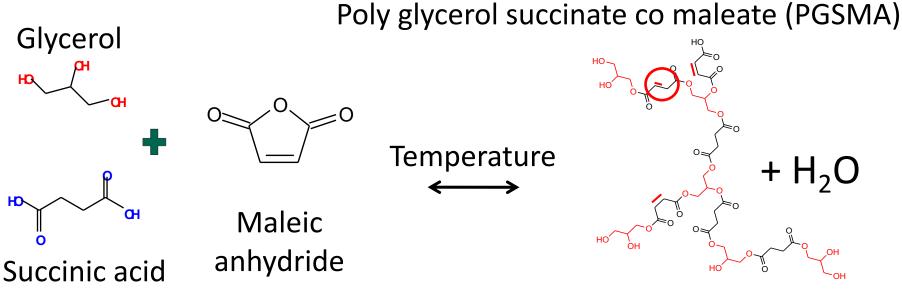
Poly (butylene succinate) (PBS)

Gel Poly glycerol succinate (PGS)


Twin screw extruder

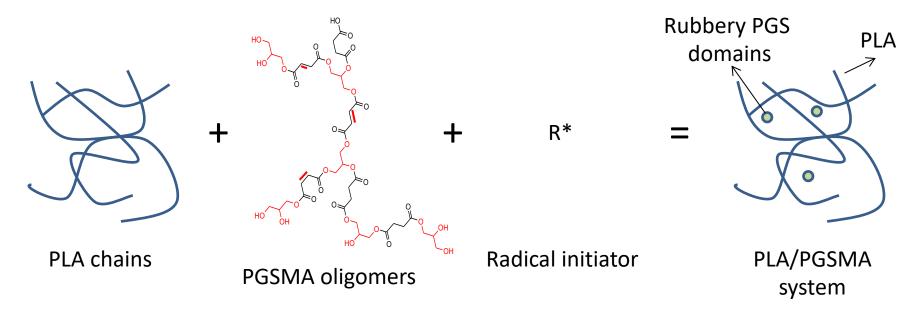
Tprocess = 150°C 2 min mixing, 100 rpm Tmold = 30°C


Injection molding


- PBS impact resistance increased 250% with 30wt% addition of gel PGS
- Tensile strength reduction of 35%
- Pure glycerol based PGS yields higher impact to PBS

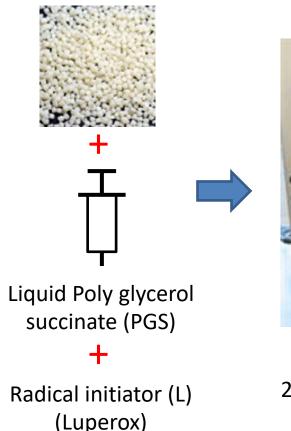
A: Pure PBS B, C: 70/30 PBS/PGS (PGS from pure and technical glycerol) D, E: 70/30 PBS/PGS (PGS from crude glycerol)

Glycerol polyester (PGS) reactive blending with Poly lactic acid (PLA)


Step 1: Synthesis of PGS containing unsaturation points by using maleic anhydride as comonomer

Valerio, O., Pin, J.M., Misra, M., & Mohanty, A.K. ACS Omega 1, no. 6 (2016): 1284-1295.

Glycerol polyester (PGS) reactive blending with Poly lactic acid (PLA)

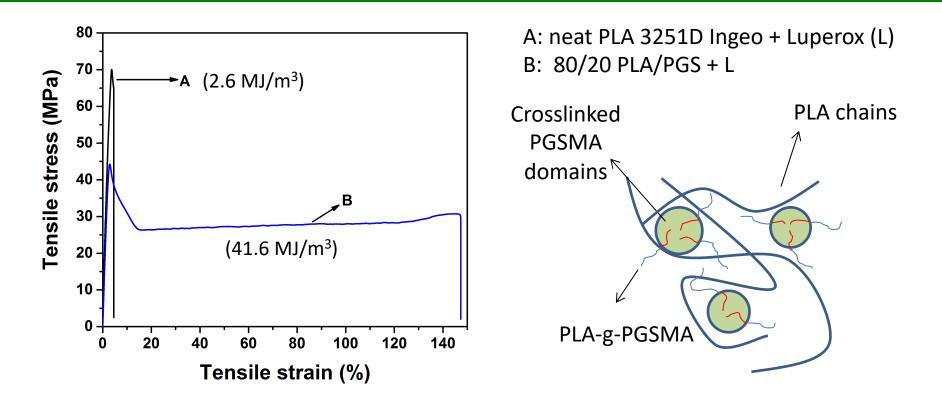

Step 2: Reactive blending of PGS and PLA in presence of a free radical initiator induces PGS crosslinking *in situ*

Valerio, O., Pin, J.M., Misra, M., & Mohanty, A.K. ACS Omega 1, no. 6 (2016): 1284-1295.

Glycerol polyester (PGS) blending with Poly lactic acid (PLA)

Poly lactic acid (PLA)

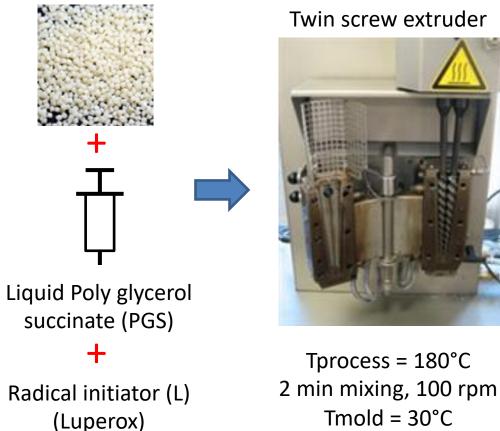
Reactive extrusion Twin screw extruder


Injection molding

Samples for mechanical testing

Tprocess = 180°C 2 min mixing, 100 rpm Tmold = 30°C

Addition of 20 wt% of PGS to PLA on reactive extrusion mode increased elongation at break in 140%


Valerio, O., Pin, J.M., Misra, M., & Mohanty, A.K. ACS Omega 1, no. 6 (2016): 1284-1295.

Can we create a biobased thermoplastic blend using PGS with similar mechanical properties to polypropylene?

PGS blending with bioplastics

PGSMA blending with Poly lactic acid (PLA) and Poly butylene succinate (PBS)

PLA and PBS pellets

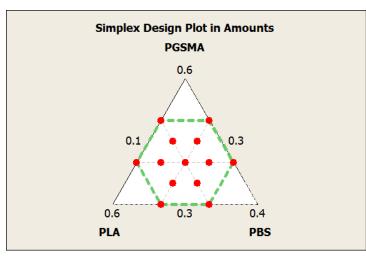
Reactive extrusion Twin screw extruder

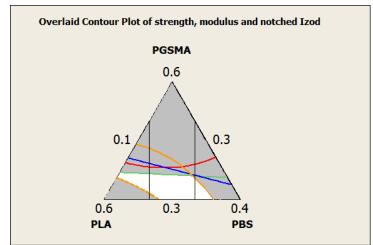
Tprocess = 180°C

Tmold = 30° C

Injection molding

Samples for mechanical testing


Target mechanical properties


Table 1: Examples of commercial polypropylene properties

Polypropylene	Tensile stress at yield (MPa)	Tensile modulus (GPa)	Notched Izod impact (J/m)	ref
LB Adstif EA5075	30	1600	50	1
LB Pro-fax 7523	27	1150	100	2
PP 2135N	23	1100	186	3
SABIC 49MK45	29	1400	65	4

- Tensile stress at yield: 25 40 MPa
- Tensile modulus: 1 2 GPa
- Notched Izod impact (23°C): 50 200 J/m
- 1. https://www.lyondellbasell.com/en/polymers/p/Adstif-EA5075/9f1f3cc4-b0ef-4379-a9e9-2b781d7b45ad
- 2. https://www.lyondellbasell.com/en/polymers/p/Pro-fax-7523/dad5e94a-e1e1-4696-b572-f3253ebfdf18
- 3. http://www.pinnaclepolymers.com/datasds.php
- 4. https://www.sabic.com/en/products/polymers/polypropylene-pp/sabic-pp

Design of experiments and optimization

- Mixture design of experiments allowed screening for optimal combination of PGSMA, PLA and PBS
- A feasibility region was found, where mechanical properties are in the range of target properties:
- Tensile stress at yield: 25 40 MPa
- Tensile modulus: 1 2 GPa
- Notched Izod impact : 50 200 J/m

Thermoplastic blend of PGSMA

Table 2: Comparison of PGSMA blends and polypropylene

Material	Tensile stress at yield (MPa)	Tensile modulus (GPa)	Notched Izod impact (J/m)	ref
LB Adstif EA5075	30	1.600	50	1
LB Pro-fax 7523	27	1.150	100	2
PP 2135N	23	1.100	186	3
SABIC 49MK45	29	1.400	65	4
35/40/25 PGSMA/PLA/PBS	33.8	1.470	159	

- An example of PGSMA/PLA/PBS blend is displaying similar mechanical performance to PP
- Properties can be adjusted by changing the formulation
- 1. https://www.lyondellbasell.com/en/polymers/p/Adstif-EA5075/9f1f3cc4-b0ef-4379-a9e9-2b781d7b45ad
- 2. https://www.lyondellbasell.com/en/polymers/p/Pro-fax-7523/dad5e94a-e1e1-4696-b572-f3253ebfdf18
- 3. http://www.pinnaclepolymers.com/datasds.php
- 4. https://www.sabic.com/en/products/polymers/polypropylene-pp/sabic-pp

Summary

- PGS can be synthesized in short and simple procedures using biobased monomers
- PGS gel has shown capability of improving impact resistance for poly(butylene succinate)
- PGSMA can be used for increasing elongation at break of PLA in reactive extrusion mode
- PGSMA was successfully used in ternary blends with PLA and PBS for creating a material with similar mechanical properties to petro-based polypropylene
- Overall PGS is a promising bioplastic for the modification of commercial thermoplastics mechanical behavior by melt blending

Acknowledgements

- Chilean National Scholarship Program for Graduate studies from CONICYT-Chile;
- Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA)- University of Guelph Bioeconomy-Industrial uses Research Program;
- OMAFRA New Directions & Alternative Renewable Fuels Research program;
- Natural Sciences and Engineering Research Council (NSERC), Canada;
- Ministry of Economic Development and Innovation (MEDI), Ontario Research Fund - Research Excellence Round - 4 program

Questions?

Thank you!