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Biorefinery?

Producing fuel alone will be not be profitable, 
need a value-added co-product

• Graphite (Graphene)
• Activated Carbon



Commercial Drivers: Price vs Cost vs Profit

Ø When talking about ‘value-added’ products the key 
question is profit, not cost or price

Ø Many companies also have a potential ‘market value’ 
hurdle target that they may reach

Ø ‘Drop-in’ vs ‘Alternative’ – Value can be hard to establish



ASPEN Bio-Oil Process Model



Potential Value-added Products from Biochar
Activated Carbon 

Production
Graphite Production

Production yield from 
biochar (%)

50 10

AC Price ($/ton) 1,100 --
Graphite Price ($/ton) -- 2,500
Capital Costs ( mil $) 31.9 20.0
Installed Cost (mil $) 21.0 24.0
Reaction Temp. (℃) 750 1,500



I. Graphite Formation

• Biomass derived carbon is inherently complex

• Advanced analytical techniques now offers detailed structural information



Characterization

• Proximate and elemental analysis
• BET surface area / pore analysis
• Scanning transmission electron microscopy (STEM)
• Electron energy loss spectroscopy (EELS)
• X-ray diffraction analysis (XRD)



Composition Analysis

• Elemental and fixed carbon 
increase as the temperature 
increases (300℃ ~350℃)

• Elemental oxygen and 
hydrogen and volatile 
decrease

• Ash content and nitrogen 
content remain relatively 
constant 



Raman Spectroscopy
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G band (1,500 – 1,630 cm-1)
• E2g symmetry 
• In-plane bond-stretching motion of 

sp2 bonding
• Does not require a polyaromatic 

sp2 structure

D band (1,355 cm-1)
• A1g symmetry
• Breathing mode of poly aromatic 

sp2 structure
• always requires a sp2 benzene ring 

structure

Calculated layer coherence length (La)
• LB pine graphite: 822.89 nm
• BCL graphite: 1005.19 nm
• Synthetic graphite: 2710.58 nm



EELS Calculation of the Carbon sp2 Content

1s -> π* peak is detected at 285 eV (C double bond)
1s -> σ* peak is detected at 292 eV (C single bond)
1s -> σ* peak is detected at 298 eV (C double bond)

G1. 1s -> π*(C=C)

G2. 1s -> σ*(C-C)

G3. 1s -> σ*(C=C)

Electron energy-loss near-edge structure

Marriott, (2014). Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the 
transmission electron microscope and X-ray photoelectron spectroscopy. Carbon.



EELS Analysis – sp2 content

11

• Three major transitions of carbon 
core electron

• Area ratio of G1 over (G1+G2+G3) 
indicates sp2 content of biochar

• The sp2 content increases as 
temperature goes up



XPS Analysis

c-c, c=c, c-H
284.6 eV

c-o
286.2 eV

c=o
287.6 eV

coo
289.1 eV

pi-pi* shake up, 
290.6

N300 82.6 8.4 7.5 1.4 0.0
N350 85.9 7.6 4.9 1.1 0.6
N500 83.2 7.9 5.8 2.1 1.0
N700 86.4 9.1 2.3 1.2 1.1

N300-AC 71.0 10.1 6.8 3.3 8.8
N350-AC 70.3 10.0 5.1 3.0 11.5
N500-AC 68.6 12.9 4.1 3.4 11.0
N700-AC 62.7 12.5 3.3 2.5 18.9

• Other than carbon and carbon-oxygen signals, pi-pi* transition 
occurs during the XPS measurement

• The pi-pi* transition is related to HOMO to LUMO transition of 
electron which is related to the size of energy gap



XRD Analysis
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N900 XRD pattern after background subtraction

• With 2θ angle and full width at half maxima, the plane reflection 
interlayer spacing (Bragg’s law) and layer coherence length (Scherrer
equation) can be calculated



XRD Lattice Parameters

• Comparison of biochar/biomass graphite/natural 
graphite

• Lattice parameters were calculated and crystalline 
cluster sizes were calculated by Scherrer equation

• Electron diffraction patterns become larger and clearer 
as the structure has higher orderings



EELS Analysis

• The sp2 content increased after activation

• Bulk plasmon excitation energy – C-C bond length relationship 
was also confirmed



Biochar Development Model



II. Graphite Formation Kinetics



Thermal Analysis, DSC and TGA

Heat Flow measured by Differential Scanning Calorimetry
• Below 300℃ - (endothermic) degradation of biomass components (cellulose, hemicellulose, 

lignin)
• 300℃ ~ 850℃ - (exothermic) formation of disordered biochar
• 850℃ ~ 1,550℃ - (endothermic) formation of graphitic stacking (huge endothermic peak)



High Temperature XRD

• A question from the preliminary exam

• Is formation of graphitic (002) stacking related to temperature or 
thermal treatment time?

• Details of graphitization kinetics of loblolly pine and lignin are studied



Loblolly Pine

• Formation of graphitic stacking was not found until reaching 1,438 ℃



Bio Choice Lignin

• Formation of graphitic stacking was not found until reaching 1,475 ℃



III. Biochar vs Activated Carbon

N300 N300-AC

N700 N700-AC



BET Surface Area 
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BET Surface Area / Micropore

• Bell shaped curve as a function of carbonization temperature
• Intense thermal treatment destroys the structure of carbon



Conclusions 
• Biomass can be used to produce ordered graphite structures

• The source (structure) of biomass matters

• Graphite formation requires a complex set of chemical and 
morphological changes

• The ‘value’ of graphite depends on production costs, and performance 
in specific applications

• The performance of activated carbon is also dependent on the biomass 
source and processing conditions




