Carbon Products from the Biorefinery: Graphite and High Surface Area Carbon

Seunghyun Yoo, Eliezer Reyes, Sunkyu Park, Stephen S. Kelley

Department of Forest Biomaterials, North Carolina

State University

5th Congreso Latin Americano Sobre

Biorefinery?

Producing fuel alone will be not be profitable, need a value-added co-product

- **Graphite (Graphene)**
- **Activated Carbon**

Commercial Drivers: Price vs Cost vs Profit

- \triangleright When talking about 'value-added' products the key question is profit, not cost or price
- \triangleright Many companies also have a potential 'market value' hurdle target that they may reach
- \triangleright 'Drop-in' vs 'Alternative' Value can be hard to establish

ASPEN Bio-Oil Process Model

Potential Value-added Products from Biochar

I. Graphite Formation

- Biomass derived carbon is inherently complex
- Advanced analytical techniques now offers detailed structural information

Characterization

- Proximate and elemental analysis
- BET surface area / pore analysis
- Scanning transmission electron microscopy (STEM)
- Electron energy loss spectroscopy (EELS)
- X-ray diffraction analysis (XRD)

Composition Analysis

Raman Spectroscopy

 $I(D)$ $C(\lambda)$ $I(G)$ = L_{a}

G band (1,500 – 1,630 cm-1)

- E_{2g} symmetry
- In-plane bond-stretching motion of sp2 bonding

 (a)

• Does not require a polyaromatic sp² structure

D band (1,355 cm-1)

 A_{1g} symmetry

- Breathing mode of poly aromatic sp2 structure
- always requires a $sp²$ benzene ring structure

Calculated layer coherence length (L_a)

- **LB pine graphite**: 822.89 nm
- **BCL graphite**: 1005.19 nm
- **Synthetic graphite**: 2710.58 nm

NC STATE UNIVERSITY

EELS Calculation of the Carbon sp2 Content

G3. 1s -> σ*(C=C)

Marriott, (2014). Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy. *Carbon.*

EELS Analysis – sp2 content

- Three major transitions of carbon core electron
- Area ratio of G1 over (G1+G2+G3) indicates $sp²$ content of biochar

• The $sp²$ content increases as temperature goes up

XPS Analysis

- Other than carbon and carbon-oxygen signals, pi-pi* transition occurs during the XPS measurement
- The pi-pi* transition is related to HOMO to LUMO transition of electron which is related to the size of energy gap

XRD Analysis

• With 2θ angle and full width at half maxima, the plane reflection interlayer spacing **(Bragg's law)** and layer coherence length **(Scherrer equation)** can be calculated

NC STATE UNIVERSITY

XRD Lattice Parameters

- Comparison of biochar/biomass graphite/natural graphite
- Lattice parameters were calculated and crystalline cluster sizes were calculated by Scherrer equation
	- Electron diffraction patterns become larger and clearer as the structure has higher orderings

EELS Analysis

- The $sp²$ content increased after activation
- Bulk plasmon excitation energy C-C bond length relationship was also confirmed

Biochar Development Model

II. Graphite Formation Kinetics

Thermal Analysis, DSC and TGA

Heat Flow measured by Differential Scanning Calorimetry

- Below 300℃ **(endothermic)** degradation of biomass components (cellulose, hemicellulose, lignin)
- 300℃ ~ 850℃ **(exothermic)** formation of disordered biochar
- 850℃ ~ 1,550℃ **(endothermic)** formation of graphitic stacking (huge endothermic peak)

High Temperature XRD

- A question from the preliminary exam
- Is formation of graphitic (002) stacking related to temperature or thermal treatment time?
- Details of graphitization kinetics of loblolly pine and lignin are studied

Loblolly Pine

• Formation of graphitic stacking was not found until reaching 1,438 ℃

Bio Choice Lignin

• Formation of graphitic stacking was not found until reaching 1,475 ℃

III. Biochar vs Activated Carbon

N300 N300-AC

N700 N700-AC

BET Surface Area

BET Surface Area / Micropore

- Bell shaped curve as a function of carbonization temperature
- Intense thermal treatment destroys the structure of carbon

Conclusions

- *Biomass can be used to produce ordered graphite structures*
- *The source (structure) of biomass matters*
- *Graphite formation requires a complex set of chemical and morphological changes*
- *The 'value' of graphite depends on production costs, and performance in specific applications*
- *The performance of activated carbon is also dependent on the biomass source and processing conditions*

United States Department of Agriculture National Institute of Food and Agriculture

Southeastern Partnership for **Integrated Biomass Supply Systems**